
Towards Running Parallel Programs on the Bare Metal via

Virtualization

James Swaine and Stephen P. Tarzia
Northwestern University

March 20, 2009

Abstract

Decades of parallel computing practice have proven
that highly parallel code runs efficiently only when
it has uninterrupted access to the hardware. We re-
port on a project whose goal is to support compiling
Data Parallel Haskell code into bootable disk images.
Our toolchain layers the Data Parallel Haskell run-
time system on top of the GeekOS operating system
and Newlib C library. We explain how our toolchain,
combined with a virtual machine monitor, can allow
optimized low-level parallel code to be run in coop-
eration with a traditional OS.

1 Introduction

The proliferation of multicore architectures in the
consumer computing market has created rapidly in-
creasing demand for languages capable of using these
architectures efficiently. Older parallel languages typ-
ically used in supercomputing environments (High
Performance FORTRAN, MPI) are often too nar-
row in scope or too low-level to suit the needs of
the general-purpose commodity software developer,
creating the need for higher levels of abstraction [4].

High-level parallel programming language imple-
menters often find themselves in the unique (and of-
ten unenviable) position of attempting to apply gen-
eral concepts to intricately difficult problems in par-
allel computing, many of which vary greatly from one
hardware implementation to another. These chal-
lenges are compounded in preemptive multitasking

environments, in which an operating system sched-
uler may unexpectedly deprive a parallel operation
of one or more processing nodes to allow other pro-
cesses to execute. These issues are often overlooked
in the performance evaluation of parallel programs
and languages, and can often significantly contribute
to degradation of performance in parallel applica-
tions [7]. It is our belief that parallel programs must
be able to allowed to execute as close to “raw hard-
ware” as possible to maximize performance, while co-
existing with traditional operating systems popular
in the consumer market (Windows, Linux, Mac OS
X).

We contend that it is vitally important that any
toolchain using this approach must provide the pro-
grammer with the convenience and expressive power
inherent in modern, high-level parallel languages.
These languages free the programmer from low-level
concerns such as thread synchronization, deadlock
avoidance, and memory layout - allowing a greater
portion of development effort to be focused on the
“task at hand”.

Though a discussion of parallel language design
is beyond the scope of this work, here we briefly
mention several notable research efforts to provide
such languages. The work perhaps most explicitly
targeting this goal is the Manticore project, which
adds parallel primitives to the Standard ML func-
tional programming language. Somewhat unique to
the project is the presentation of a unified API for
“heterogeneous” parallel operations, encouraging use
of different types of parallelism (coarse-grained, fine-

1

grained) where appropriate [4]. This represents a sig-
nificant attempt to shed the aforementioned narrow-
scope problem which has limited the usefulness of
other parallel languages.

Another substantial work in this domain is Data
Parallel Haskell [3], which fuses a modern, robust
functional programming language (and associated li-
braries) with an expressive syntax for data-parallel
operations similar to that of NESL [2].

1.1 Challenge: Operating Systems

As noted above, traditional operating systems de-
signed for multitasking can often minimize or negate
the performance gains sought by parallel application
developers. The challenge, therefore, is to develop a
tool facilitating a parallel program’s uninterrupted
access to the raw hardware - this tool must exist
alongside the traditional operating system, requiring
no modification to the kernel itself. We propose to
accomplish this via a virtualization layer, in which
a traditional operating system executes as a guest,
and is capable of executing parallel applications by
spawning parallel guests. These guests are also man-
aged by the virtual machine monitor, which main-
tains full control of system resources, including mem-
ory mappings. It is our contention that this capa-
bility has the potential to profoundly affect parallel
program performance by possibly reducing locality
issues, another primary culprit in reducing parallel
program performance [10].

This design still requires an operating system ker-
nel to execute within a parallel guest, providing vari-
ous low-level functions, such as booting and rudimen-
tary device support (for screen printing, for example).
In order for a parallel guest to be efficient, it is criti-
cal to minimize the footprint of the operating system
kernel within the guest, while still providing a rea-
sonable amount of system call and library support.

2 System architecture

Our proposed solution, thus, is to meld high-level ap-
plication code with a lightweight OS. The end prod-
uct is a bootable disk image which can be run either

Newlib
provides: libc & libm
(printf, math, time,
malloc, file I/O, rand,

process, signals, etc.)

calls: OS stubs

GeekOS
provides: a limited API

calls: main()
OS stubs

(the OS API)

provides: 18 functions needed by Newlib

calls: GeekOS functions

guest.c
provides: main()

calls: libc, libm, (others?)

Figure 1: System software components and their de-
pendence relationships

directly on a physical machine, in an emulator such as
QEMU, or on a virtual machine monitor. Essentially,
we have built a toolchain that produces customized
operating systems - application code executes within
the primary kernel thread of the operating system,
and retains kernel-level privileges. Figure 1 shows
the components (operating system, libraries, and user
application code) that make up this architecture, as
well as the compilation dependencies between them.

2.1 GeekOS

GeekOS is an educational operating system devel-
oped by Hovemeyer et al. [8]. It is written in about
4000 lines of C and 500 lines of assembly code; as far
as operating systems go, it is miniscule. As evidenced
by the codebase size, its design is very simple and its
functionality limited. It is not intended as a Linux
or Windows competitor; it primarily provides a basic
operating system framework that undergraduate CS
students might fully explore, understand, and extend
within a semester’s time.

GeekOS handles the messy details of

• the x86 boot process

• device drivers for PIC, keyboard, timer, and
VGA

2

• interrupt handling

• kernel memory allocation

but omits implementation of important OS abstrac-
tions like user threads, filesystems, IPC, etc.

We chose GeekOS as the foundation of our custom
OS toolchain. It is worth mentioning that at least
one other OS research project has used GeekOS as a
convenient bootable foundation: namely Palacios, a
“type-I”, non-paravirtualized virtual machine moni-
tor [9].

Our goal has been to support a wide variety of
application code, without requiring onerous conces-
sions from the programmer. However, it does seem
that at least some concessions are required for the
sake of performance. We cannot support something
like a full Linux or Windows API while keeping the
OS thin; performance and programmability must, to
some extent, be balanced. Considering the case of
extending GeekOS with application code, the most
straightforward solution is to have the programmer
write code to be inserted directly into the GeekOS
source. That would be painful. As a compromise,
we chose to support the standard C library (libc and
libm). Beyond that, most of the commonly used C
libraries are unsupported, and we do not currently
provide POSIX compatibility.

2.2 Newlib

GNU’s standard C library (glibc) is used by most
Unix-like systems, accomplishing much of its func-
tionality via OS-specific system calls (e.g. I/O and
IPC). Though potential guest applications will un-
doubtedly expect a subset of C library functionality,
we avoided porting the glibc library to GeekOS. Be-
cause GeekOS has no system call interface (or user-
space API), this approach would have required us to
create one. Next, we would be faced with porting
glibc; this is no easy task since the library is highly
optimized for a few important platforms (and is thus
very complex).

As an alternative to glibc, we chose to port Newlib
to GeekOS. Newlib is an open-source standard C
libary implementation initially developed by Red
Hat, Inc. [1]. Newlib is a favorite choice of embedded

systems software developers [5, 6], because such sys-
tems often have no real operating system at all. The
beauty of Newlib is that it was designed specifically
with portability in mind - a majority of the library is
implemented using platform-independent code, and
all OS-specific code is delegated to 18 “stub” func-
tions.

A portion of our implementation work involved
adding code within these stub functions that targets
the GeekOS system-call interface.

3 Implementation

Compilation of a parallel guest is performed in two
independent phases:

• The language-specific compiler toolchain (cur-
rently restricted to the GHC compiler) is invoked
to produce a portable object format file contain-
ing parallel application code, as well as a header
file declaring C versions of the Haskell module’s
exported functions.

• A GCC cross-compiler is invoked to link parallel
application code with the GeekOS Newlib sys-
tem call interface.

A cyclic dependency exists between parallel appli-
cation code and GeekOS kernel code. After spawning
a primary kernel thread, our slightly modified vari-
ant of GeekOS invokes the entry point into paral-
lel application code (the main() function). During
the second compilation phase noted above, the linker
will expect to locate this symbol within the object
file built during phase 1. Similarly, “infrastructure”
code (the Haskell runtime in this case) expects to find
exported symbols in GeekOS code (the kernel system
call interface). In reality, these system calls may ei-
ther be present directly in GeekOS code or Newlib.

Here we leverage a convenience provided by the
GHC compiler - support for the C Foreign Function
Interface, which simplifies the means through which
a Haskell library might invoke a function in a C li-
brary, and vice versa. It is possible to instruct the
GHC compiler to produce, in addition to the typi-
cal object file containing Haskell code, a C source-

3

header file combination containing stubs for invok-
ing various Haskell functions defined in the compiled
module. For our purposes this provided an easy in-
tegration point - a C source file can simply declare
a main function, invoking the Haskell application in-
side this function (note that this does not conflict
with GeekOS’s own entry point function, which uses
Pascal-style casing). For example, consider the fol-
lowing basic Fibonacci sequence implementation in
Haskell:

module FibHs where

import Foreign.C.Types

fibonacci :: Int -> Int

fibonacci n = fibs !! n

where

fibs = 0:1:zipWith (+) fibs (tail fibs)

fibonacci_hs :: CInt -> CInt

fibonacci_hs = fromIntegral . fibonacci . fromIntegral

foreign export ccall fibonacci_hs :: CInt -> CInt

Here we define a simple function, and mark that
function as callable from the C realm. We invoke
the first phase of the compilation process and slightly
modify the resulting C source, giving the following:

#include "fibonacci_stub.h"

#include <stdio.h>

void main(int argc, char *argv)

{

int i;

hs_init(0, argv);

i = fibonacci_hs(42);

printf("Fibonacci: %d\n", i);

hs_exit();

}

This main() function will be invoked by GeekOS’s
primary kernel thread, at which point the user appli-
cation effectively becomes the guest operating system
kernel.

4 Future work

This report has described work that is somewhat in-
complete. One area where significant improvement

can be made without much effort is in improving sup-
port for C guest programs. In particular, rudimen-
tary filesystem support and better tty and/or ncurses
support are needed for many of the candidate pro-
grams that we attempted, unsuccessfully, to compile
into tiny guests.

Though the ultimate goal of the project is to com-
pile any arbitrary application written in a high-level
parallel language, the difficulties encountered in at-
tempting to execute simple C programs are signif-
icant, because many higher-level programming lan-
guages depend on functionality in base C libraries
(e.g. Data Parallel Haskell).

4.1 Shortcomings

Though we believe there is tremendous potential in
this approach to parallel execution, there remain con-
cerns with the current implementation which must be
addressed. Principal among these concerns is the exe-
cution of application in privileged kernel mode within
the guest operating system - an obviously undesirable
scenario, even in the context of a “safe” language such
as Haskell which does not allow direct memory access.
Currently, the architecture relies on the facilities of
the virtual machine monitor to enforce protection,
which may yield undesirable performance results.

As a minimalist kernel, GeekOS does not pro-
vide features that might be considered essential for
supporting a wide range of applications - filesystem
support, threading libraries, implementation of the
POSIX API, and supplemental C libraries.

4.2 Towards a parallel guest

To date, we have focused our efforts on the successful
compilation of an application written in Data Paral-
lel Haskell. Due to resource and time constraints, we
have not yet achieved this goal, as the porting of DPH
and its underlying compilation framework (the Glas-
gow Haskell Compiler) has proven a time-consuming
task. Haskell offers a sophisticated runtime environ-
ment, complete with a garbage collector and user-
level threading libraries, which depend on functional-
ity provided by neither GeekOS nor newlib. We also

4

deem it important to draw definitive conclusions con-
cerning the performance potential of both the GHC
runtime system and the DPH parallel libraries, which
remains an open research problem, before proceeding
with this work.

4.3 Migration from GeekOS

GeekOS has proven to be an excellent starting foun-
dation for this project due to its simplicity. However,
GeekOS is not without limitations, most notably

• lack of support for shared memory multiproces-
sor systems

• lack of filesystem support

• lack of device driver support.

While a minimalist operating system kernel is not
without its advantages, as previously discussed, this
may become problematic as the toolchain expands
its support for broader classes of applications. Other
alternatives exists that may provide better support
for general-purpose applications, most notably the
Kitten kernel. Retaining the “lightweight” moniker
while offering a superset of GeekOS’s functionality,
this alternative has already been explored in related
work concerning virtual machine monitor support for
SMP systems [9].

4.4 VMM research

Much work is left to be done in the area of virtual ma-
chine monitor design and implementation in order to
realize the ultimate goal of this project. Interestingly,
these problems can be viewed as a generalization of
core problems associated with the scalability of par-
allel architectures and programs today - scheduling
and communication.

• The scheduling of multiple parallel guests on a
manycore machine still very much remains an
open research problem.

• Cooperating guests must be able to communi-
cate efficiently, a concern which has also not yet
been addressed by current work.

Perhaps the most attractive option for inter-guest
communication involves the development of special
“hypercalls”, enabling guests to directly call the
VMM. This might add flexibility to the design, as
the actual implementation details of these hypercalls
are left to the VMM and are easily modified (trans-
parently from the perspective of the guest). An al-
ternative approach might employ standard network-
ing protocols on top of virtualized ethernet devices;
however, this may introduce both footprint and per-
formance concerns.

Clearly, it remains to be defined what role the vir-
tual machine monitor will play in this architecture, as
well as how that role might be implemented. In defin-
ing this role, it will be crucial to understand how the
overhead associated with a virtual machine monitor
will counterbalance the potential performance gains
in executing parallel guests.

References

[1] The newlib homepage. http://sourceware.
org/newlib/.

[2] Blelloch, G. E. Nesl: A nested data-parallel
language. http://portal.acm.org/citation.
cfm?id=865063, 1992.

[3] Chakravarty, M. M. T., Leshchinskiy, R.,
Jones, S. P., Keller, G., and Marlow,
S. Data parallel haskell: a status report. In
DAMP ’07: Proceedings of the 2007 workshop
on Declarative aspects of multicore programming
(New York, NY, USA, 2007), ACM, pp. 10–18.

[4] Fluet, M., Rainey, M., Reppy, J., Shaw,
A., and Xiao, Y. Manticore: A heterogeneous
parallel language. In DAMP ’07: Proceedings
of the 2007 workshop on Declarative aspects of
multicore programming (New York, NY, USA,
2007), ACM, pp. 37–44.

[5] Gatliff, B. Embedding with GNU:
Newlib. http://www.embedded.com/story/
OEG20011220S0058, dec 2001.

5

[6] Gatliff, B. Embedding GNU: Newlib,
part 2. http://www.embedded.com/story/
OEG20020103S0073, jan 2002.

[7] Gupta, A., Tucker, A., and Urushibara,
S. The impact of operating system schedul-
ing policies and synchronization methods on the
performance of parallel applications. In Proceed-
ings of the 1991 ACM SIGMETRICS conference
on Measurement and modeling of computer sys-
tems (New York, NY, USA, May 1991), ACM,
pp. 120–132.

[8] Hovemeyer, D., Hollingsworth, J. K.,
and Bhattacharjee, B. Running on the bare
metal with GeekOS. In In Proc. of the 35th
ACM Symposium on Computer Science Educa-
tion (2004), pp. 315–319.

[9] Lange, J., and Dinda, P. An introduction to
the palacios virtual machine monitor – release
1.0. Tech. Rep. NWU-EECS-08-11, Department
of Electrical Engineering and Computer Science,
Northwestern University, 2008.

[10] Singh, J. P., Gupta, A., and Levoy,
M. Parallel visualization algorithms: Per-
formance and architectural implications.
http://ieeexplore.ieee.org/xpls/abs all.
jsp?arnumber=299410, July 1994.

6

