
ESDS final project:

Model-checking embedded systems with

probabilistic nondeterminism

Stephen Tarzia

March 17, 2007

Abstract

The broad goal of this project was to start exploring the practical lim-
itations of model checking in the context of embedded systems. Specifi-
cally, random behavior in a hard-disk power-management policy and its
environment was modeled in TLA+, a language with no explicit support
for probabilistic nondeterminism. Variables were added to the system
state to represent the probability of reaching the current state. States vi-
olating the safety condition contribute their probability to the aggregate
failure probability. This method was found to be useful for moderately-
sized systems; in larger systems, aggravated state space explosion and
limited probability precision are obstacles.

1

Contents

1 Introduction 3
1.1 System modelling with TLA+ . 3
1.2 When to model-check . 3
1.3 Classic challenges . 4

2 Related work and background 4

3 TLA+ model for dynamic power management 5
3.1 Fractions TLA+ module . 5
3.2 Probability TLA+ module . 5
3.3 Disk DPM system . 6
3.4 TLC model-checking results . 6
3.5 Environment . 6
3.6 Analysis . 7
3.7 Cost of modelling probability . 7

4 Conclusions 7

5 Future Work 8

A Probability module code 9

B Fractions module code 9

C DPM TLA+ code 11
C.1 DPM config file . 14

2

1 Introduction

Embedded systems are good candidates for model-checking for several reasons.
First of all, a correctness proof is often required. In some devices, failure can
have severe safety or security consequences. Also, hardware and firmware de-
signs are impossible to ”patch” after production, so there is an emphasis on get-
ting them right the first time. Manual correctness proof can require a high level
of mathematical sophistication and an understanding of every design decision.
Thus, an automated verification technique accessible to practicing engineers is
desired.

In cases where strict correctness is impossible or prohibitively expensive, a
design with a small failure probability may be desired. Therefore, a system
verification methodology should allow for probabilistic actions and properties.

1.1 System modelling with TLA+

TLA+ is a system specification language [2]. Formally, a system is a set of
behaviors, a behavior is a sequence of states, and a state is an assignment of
values to a set of variables. The primary advantage of specification is that
it allows one to use a model-checker to simulate all possible behaviors of the
system and thus identify any behaviors that reach unexpected states. TLC is
the TLA+ model-checker.

A TLA+ code defines a set of variables, a set of actions that modify the
variables, and a set of predicates on the variables. A TLC configuration file
completes a system specification by indicating the semantics of the TLA+ code.
The configuration file identifies the initial state predicate, the next state action,
and the temporal predicate. It also has model-checker directives that specify
specific values to be assigned to constants and predicates to be tested by the
model-checker.

1.2 When to model-check

Model checking is attractive for systems whose complexity lies in scheduling.
A scheduler, sometimes called an adversary, is a nondeterministic process that
decides the order of actions in a system. For complex systems, it is difficult to
generalize for every possible schedule in a manual proof; a model-checker can
approach this with an exhaustive search. However, nondeterministic scheduling
leads to an exponential number of behaviors, thus restricting the feasibility of
any exhaustive approach. There is a ”sweet spot” in problem complexity for
which model-checking is very useful; these are systems that are too complex for
manual proof but small enough to allow exhaustive behavior space exploration
by a computer (thousands to millions of behaviors).

3

1.3 Classic challenges

Beyond the language barrier, several challenges exist in model-checking embed-
ded systems. The state space explosion problem is, perhaps, the most funda-
mental. Most real systems exhibit wide data-value ranges and nondeterministic
event ordering; both of these factors contribute to state space explosion.

2 Related work and background

Segala and Lynch [3] introduced probabilistic I/O automata (PIOA) as a model
for randomized systems. They distinguish between true and probabilistic non-
determinism. True nondeterminism is decided by an unpredictable schedule
or adversary. Probabilistic nondeterminism is decided by a simple Bernoulli
scheme. They introduce probabilistic executions. These are the probabilistic
analogue of a behavior; it is a tree of states where branching represents proba-
bilistic choice. A given schedule produces a single probabilistic execution. They
describe several methods of manual PIOA analysis.

PRISM [5, 4, 6] is a symbolic model-checker with explicit support for prob-
abilistic nondeterminism and continuous time. PRISM supports three proba-
bilistic models as shown in Table 1. The fourth model, PTA, is only supported
by an expensive reduction to discrete time. It should be noted that the contin-
uous time model used is somewhat weak. Each transition has a random delay;
however, the distribution is restricted to exponential with a custom rate. This
is analogous to the Bernoulli restriction for probabilistic nondeterminism; it is
unclear to me whether this is suitably general.

Table 1: Characteristics of PRISM’s supported probabilistic models

continuous time pure nondeterminism
discrete time Markov chains NO NO

Markov decision processes NO YES
continuous time Markov chains YES NO

probabilistic timed automata YES YES

Benini et al. [7] modeled the dynamic power management problem as a
Markov decision process and solved it optimally in polynomial time as a linear
programming optimization problem. This project borrows their problem formu-
lation and will use their results as a benchmark. Since we cannot design a better
policy, a model-checking solution is sought simply to develop a general-purpose
probabilistic model-checking methodology.

4

3 TLA+ model for dynamic power management

TLA+ and TLC were chosen primarily because they were familiar. The pri-
mary contribution of this project is the modeling of probabilistic systems in a
probability-agnostic language. TLA+ is expressive enough to make this possi-
ble. It is done by adding a probability variable for each instance of probabilistic
nondeterminism in the system (these are p1 and p2 in the disk model). These
variables are initialized to 1 and multiplied by a transition’s probability factor
when taken. The overall probability of reaching a state is then the product of
each probability variable.

3.1 Fractions TLA+ module

TLC does not support real numbers. It only supports natural and integer num-
bers using the 32-bit java int datatype. To represent probabilities, high preci-
sion fractional numbers are needed. I tried to overcome this obstacle by defin-
ing a fixpoint approximation in the Fractions TLA+ module. A fraction on
the range [0, 1] is approximately represented by a pair of integers in the range
[0, 109]. The two components, upper and lower, represent the upper and lower
bound values. For example, the pair of integers (450000000, 550000000) repre-
sents 50% plus or minus 5% and would be printed as ”45.0000000%...55.0000000%”.
The quirks of the implementation are hidden from the user; in TLA+ code,
fractions are defined in the familiar way, a/b. A set of fractional arithmetic
operations are defined which accurately account for error introduced by the fix-
point approximation. The bounds are strict, so our probability analysis will be
strictly correct (within some given error range). However, when the behavior
space is very large the probability of each behavior tends to be very small and
error margin becomes significant.

See Appendix B for the module code listing.

3.2 Probability TLA+ module

The Probability module extends Fractions to include all of the reusable
probabilistic model-checking code. Most importantly,, it defines a function,
RecordFailure, for aggregating and reporting probability values. Here I rely
on two special TLC module functions, TLCSet and TLCGet, which operate on an
array of global variables. See Appendix A for the module code listing.

Figure 1 gives part of a TLC trace for a specification using the Probability
module. Each line reports on a discovered failure state; the probability of that
state and the current aggregate failure probability are printed as ranges. When
using the Probability module, the failure safety condition is not specified in
the TLC configuration file. This is because we want to explore all states to
calculate the total failure probability. Instead, the safety condition is used in
the TLA+ specification to trigger RecordFailure and halt that behavior; see
the Next action in Appendix C as an example.

5

"Violation: prob = 0.0012328%...0.0012329%, total = 23.1280246%...23.1280459%"

"Violation: prob = 0.0007495%...0.0007496%, total = 23.1287741%...23.1287955%"

"Violation: prob = 0.0009015%...0.0009016%, total = 23.1296756%...23.1296971%"

"Violation: prob = 0.0000030%...0.0000031%, total = 23.1296786%...23.1297002%"

"Violation: prob = 0.0000002%...0.0000003%, total = 23.1296788%...23.1297005%"

"Violation: prob = 0.0000017%...0.0000018%, total = 23.1296805%...23.1297023%"

"Violation: prob = 0.0000021%...0.0000022%, total = 23.1296826%...23.1297045%"

"Violation: prob = 0.0000002%...0.0000003%, total = 23.1296828%...23.1297048%"

"Violation: prob = 0.0000003%...0.0000004%, total = 23.1296831%...23.1297052%"

"Violation: prob = 0.0000000%...0.0000001%, total = 23.1296831%...23.1297053%"

"Violation: prob = 0.0000000%...0.0000001%, total = 23.1296831%...23.1297054%"

"Violation: prob = 0.0000139%...0.0000140%, total = 23.1296970%...23.1297194%"

"Violation: prob = 0.0000167%...0.0000168%, total = 23.1297137%...23.1297362%"

"Violation: prob = 0.0000030%...0.0000031%, total = 23.1297167%...23.1297393%"

Figure 1: Snippet of TLC Probabilistic model-checking output

3.3 Disk DPM system

Following Benini et al. [7], a hard-disk dynamic power management system was
modeled. As a simplification, the disk can either be asleep or spinning ; tran-
sitions between these states occur based on the DPM policy. A disk requester
is either active, constantly submitting disk requests, or idle; transitions be-
tween these states happen with some fixed probability, based on experimental
measurements [7]. Requests that occur while the disk is asleep increase the
length of the request queue. In this case, the DPM policy is hard-coded into
the model (the disk sleeps with 10% probability if the request queue is empty).
Disk power consumption and workload probability parameters are specified in
the TLC configuration file (see Appendix C.1). Time is discretized; each step
represents 1ms. Each request can be handled by the spinning disk in one time
step. The disk is initially asleep, and spinup requires one time step. The failure
condition was was average power consumption over a given value; execution
duration is a configurable parameter.

3.4 TLC model-checking results

3.5 Environment

The test machine had an Intel Core 2 6300 CPU @ 1.86GHz with 1 GB RAM
running a Linux 2.6.18 kernel. The Sun Java 2 VM version 1.5.0 09 was used.
No significant memory swapping occurred in the model-checking. TLC was
invoked with the following syntax:
java -Xmx3500m tlc.TLC -config [config file] [tla file]

6

Table 2: DPM model-checking results

duration checking failure failure total unique unique states
(ms) runtime lower bound upper bound states states w/out prob

5 0m1.183s 99.9954576% 99.9954613% 83 49 43
10 0m1.213s 99.9954583% 99.9954659% 182 108 93
15 0m25.511s 39.1746218% 39.1809292% 296844 145455 5397
20 1m21.359s 39.3785315% 39.3996157% 979865 459474 13407
25 10m41.591s 4.6369086% 4.7174982% 10197855 3700198 44969
30 26m48.737s 4.6018760% 4.7212036% 17201304 5996770 82755

3.6 Analysis

Table 2 gives the performance and calculated probability ranges for six different
system execution durations. Duration corresponds to the number of time steps
considered; this is the depth of the state tree.

The failure probability results are as expected. In very short executions the
first spinup will surpass our energy budget; the 0.005% success rate represents
the probability of no disk requests being made. The strong correlations in
probability between the successive pairs of experiments is a bit suspicious; I
expected a smoother function, so this should be investigated.

The largest probability error encountered is 0.12%, which shows that the
fraction approximation used is sufficient. Generally, systems with more states
will introduce greater error but we can seen that checking such systems would
likely be intractable.

3.7 Cost of modelling probability

Adding probability variables to the system state has the potential to greatly
increase the number of distinct states. A system state reachable through many
different action sequences will be represented by many different model states,
each with a distinct values for probability variables. Initial results indicated
only a small increase in state space when adding probability variable. This was
caused by the tendency of the probability values to uniformly underflow to zero
with the limited precision initially available. Actually, the effect is significant.
After adding probabilities, checking time for the 30 ms case was increased from
7 seconds to almost 27 minutes. The rightmost column in Table 2 shows the
number of unique states in the original, probability-free, system.

4 Conclusions

The results show that probabilistic model-checking with TLC is feasible for
moderately sized systems. However, the specification constructs needed are

7

somewhat complex. Some progress was made by encapsulating much of the
common probability code in the Probability module. I believe that a single,
well commented, example such as Appendix C may be sufficient to teach the
use of my method.

It is always difficult to check the semantics of a specification. A positive
result from the model-checker is often due to behavior-limiting specification
errors. It is difficult to detect such errors. Probabilistic systems have additional
parameters that much be manually checked for sanity; for example, transition
probabilities must add to one.

5 Future Work

In addition to randomized workloads and algorithms, probabilistic models can
be used to check embedded system subject to some types of attacks [8, 11].
Other approaches to this problem leave some room for improvement [10]. The
effectiveness of the PRISM model-checker could also be evaluated.

Low-probability branches could be pruned to increase running time. This
must be done carefully since small probabilities can add up arbitrarily large.

References

[1] S. Edwards, L. Lavagno, E. A. Lee, and A. Sangiovanni-Vincentelli. Design
of Embedded Systems: Formal Models, Validation, and Synthesis. Proc.
IEEE, Mar. 1997.

[2] L. Lamport. Specifying Systems. Boston: Addison-Wesley Longman Pub-
lishing Co., 2002.

[3] R. Segala. Modeling and Verification of Randomized Distributed Real-Time
Systems. Doctoral Thesis, Massachusetts Institute of Technology, 1995.

[4] M. Kwiatkowska. Model Checking for Probability and Time: From Theory
to Practice. In Proc. 18th IEEE Symposium on Logic in Computer Science
(LICS’03), pages 351-360, June 2003.

[5] PRISM web page (http://www.cs.bham.ac.ek/~dxp/prism)

[6] G. Norman, D. Parker, M. Kwiatkowska, S. Shukla, and R. Gupta. Us-
ing probabilistic model checking for dynamic power management. Formal
Aspects of Computing 17, 2, pages 160–176, Aug 2005.

[7] L. Benini, A. Bogliolo, G. Paleologo, and G. De Micheli. Policy optimization
for dynamic power management. In Design Automation Conference, pages
182–187, 1998.

[8] D. D. Hwang, P. Schaumont, K. Tiri, and I. Verbauwhede. Securing Em-
bedded Systems. IEEE Security and Privacy 4, 2 (Mar. 2006), 40-49.

8

[9] Koopman, P., Embedded system security, IEEE Computer, vol.37, no.7pp.
95- 97, July 2004

[10] O. Sheyner, J. Haines, S. Jha, R. Lippmann, and J. M. Wing. Automated
Generation and Analysis of Attack Graphs. In Proceedings of the 2002 IEEE
Symposium on Security and Privacy (May 12 - 15, 2002). 273.

[11] P. Kocher, R. Lee, G. McGraw, A. Raghunathan, and S. Ravis, Security as
a New Dimension in Embedded System Design, Proc. Design Automation
Conf., Jun. 2004.

A Probability module code

module Probability
extends Fractions
local T ∆= instance TLC
local S ∆= instance Sequences
local N ∆= instance Naturals

Applies factor x to probability measure p

this state transition

p .= x ∆=
p′ = p ∗∗x

Pray that the user doesnt call T!TLCSet(41) or T!TLCSet(42)

InitSum ∆= T !TLCSet(41, 0) ∧ T !TLCSet(42, 0)

GetSum ∆= T !TLCGet(41) . . .T !TLCGet(42)

AddToSum(a) ∆=
∧ T !TLCSet(41, T !TLCGet(41)N ! + a.lower)
∧ T !TLCSet(42, T !TLCGet(42)N ! + a.upper)

RecordFailure(a) ∆=
∧AddToSum(a)
∧ T !PrintT (“Violation: prob = ”S ! ◦

FracToString(a)S ! ◦ “, total = ”
S ! ◦ FracToString(GetSum))

B Fractions module code

module Fractions
local N ∆= instance Naturals
local S ∆= instance Sequences
local T ∆= instance TLC

9

Define the set of all Fractions

Fraction has two fields: lower and upper bound

Frac ∆= [lower : N !Nat , upper : N !Nat]

Truth(a) ∆= if (a) then 1 else 0

Definition of a fraction range

a . . . b ∆= [lower 7→ a, upper 7→ b]

Definition of fraction addition

a ++ b ∆= a.upperN ! + b.upper . . . a.lowerN ! + b.lower

Definition of fraction subtraction

a −− b ∆= a.upperN !− b.lower . . . a.lowerN !− b.upper

Lower bound for integer division

divisionLowerBound(a, b) ∆= aN ! ∗ (1000000000N !÷ b)

Construct a fraction from the division of two Naturals

a/b ∆=
divisionLowerBound(a, b) . . .
divisionLowerBound(a, b)N ! + Truth(aN !%bN ! > 0)

Define multiplication

31623 = Sqrt(1000000000)

multiplication lower bound(a, b) ∆=
(aN !÷ 31623)N ! ∗ (bN !÷ 31623)
N ! + (((aN !%31623)N ! ∗ (bN !÷ 31623))N !÷ 31623)
N ! + (((bN !%31623)N ! ∗ (aN !÷ 31623))N !÷ 31623)

a ∗∗b ∆=
[lower 7→ multiplication lower bound(a.lower , b.lower),
upper 7→ multiplication lower bound(a.upper , b.upper)N ! + 1]

Formats a single fraction

ProtoFracToString(a) ∆=
T !ToString(aN !÷ 10000000)S ! ◦ “.”S ! ◦
T !ToString((aN !÷ 1000000)N !%10)S ! ◦
T !ToString((aN !÷ 100000)N !%10)S ! ◦
T !ToString((aN !÷ 10000)N !%10)S ! ◦
T !ToString((aN !÷ 1000)N !%10)S ! ◦
T !ToString((aN !÷ 100)N !%10)S ! ◦
T !ToString((aN !÷ 10)N !%10)S ! ◦
T !ToString(aN !%10)S ! ◦ “%”

Formats an upper-lower bound pair

FracToString(a) ∆=
ProtoFracToString(a.lower)S ! ◦ “...”S ! ◦ ProtoFracToString(a.upper)

10

C DPM TLA+ code

module DPM
Specification of a Dynamic Power Management system consisting of

disk and disk requester

extends Naturals, Sequences, Probability

Experiment parameters

constants Duration, MaxQ , MaxAvgPower

constants Divisor divisor for all fractions in config file

Policy parameters

It would be better to have a fixed timeout, but this would create

many more states

constants DiskSleepProb probability that the disk will sleep if idle

Workload parameters

constants RequesterWakeupProb, RequesterSleepProb

Hardware parameters

constants StartupEnergy , SpinEnergy , AccessEnergy

variables Time, DiskRequestQ , DiskState, RequesterState
variables StartupCount , SpinCount , AccessCount

Probability is a special variable that indicates the probability of reaching

the current state.

p1 and p2 are probabilities of each of the two decisions made.

These are integers representing hundredths of a percent

variable p1, p2

Physical state

HardwareState ∆= 〈DiskRequestQ , DiskState, RequesterState〉

Intangible state

VirtualState ∆= 〈Time, StartupCount , SpinCount , AccessCount , p1, p2〉

Init ∆= ∧ Time = 0
∧DiskRequestQ = 0
∧DiskState = “asleep”
∧ RequesterState = “idle”
∧ StartupCount = 0
∧ SpinCount = 0
∧AccessCount = 0
∧ p1 = 1/1

11

∧ p2 = 1/1
∧ InitSum

TypeOK ∆=
∧ Time ∈ Nat
∧DiskRequestQ ∈ Nat
∧DiskState ∈ {“spinning”, “asleep”}
∧ RequesterState ∈ {“active”, “idle”}
∧ StartupCount ∈ Nat
∧ SpinCount ∈ Nat
∧AccessCount ∈ Nat
∧ p1 ∈ Frac
∧ p2 ∈ Frac

TotalEnergy ∆=
StartupEnergy ∗ StartupCount
+ SpinEnergy ∗ SpinCount
+ AccessEnergy ∗AccessCount

Total probability is the product of the probabilities of the two components

Probability ∆= p1 ∗∗p2

ideally there would be a better latency measure than Q length

Safety ∆=
∧ TotalEnergy ÷Duration < MaxAvgPower
∧DiskRequestQ < MaxQ

ACTIONS

ClockTick ∆=
∧ Time < Duration Stop clock and execution after Duration ticks

∧ Time ′ = Time + 1

Service ∆=
if (RequesterState = “active” ∧DiskState = “asleep”) then

DiskRequestQ ′ = DiskRequestQ + 1
else if (∧ RequesterState = “idle”
∧DiskState = “spinning”
∧DiskRequestQ > 0) then
DiskRequestQ ′ = DiskRequestQ − 1
else

unchanged DiskRequestQ

ConsumeEnergy ∆=
∧ if (DiskState = “spinning”) then
∧ SpinCount ′ = SpinCount + 1
∧ if (DiskRequestQ > 0) then

12

AccessCount ′ = AccessCount + 1
else unchanged AccessCount
else

unchanged 〈SpinCount , AccessCount〉
∧ if (DiskState = “asleep” ∧DiskState ′ = “spinning”) then
StartupCount ′ = StartupCount + 1
else

unchanged StartupCount

UpdateRequesterState ∆=
if (RequesterState = “active”) then

PROBABILISTIC NONDETERMINISM

Active requester will become idle with some fixed probability

∨ ∧ p1 .= RequesterSleepProb/Divisor
∧ RequesterState ′ = “idle”

∨ ∧ p1 .= 1/1−− RequesterSleepProb/Divisor
∧ unchanged RequesterState

else
PROBABILISTIC NONDETERMINISM

Idle requester will become active with some fixed probability

∨ ∧ p1 .= RequesterWakeupProb/Divisor
∧ RequesterState ′ = “active”

∨ ∧ p1 .= 1/1−− RequesterWakeupProb/Divisor
∧ unchanged RequesterState

UpdateDiskState ∆=
if (DiskRequestQ > 0) then

∧DiskState ′ = “spinning”
∧ unchanged p2

else
PROBABILISTIC NONDETERMINISM

Idle disk will sleep with some fixed probability.

This is in liu of a timeout, to simplify the model.

∨ ∧ p2 .= DiskSleepProb/Divisor
∧DiskState ′ = “asleep”

∨ ∧ p2 .= 1/1−−DiskSleepProb/Divisor
∧DiskState ′ = “spinning”

Next ∆=
Encounted a trace that violates safety

if (¬Safety) then
add probability of this behavior to the sum

∧ RecordFailure(Probability)
halt execution

∧ unchanged 〈HardwareState, VirtualState〉

Halt execution if finished. This is normal termination.

13

else if (Time = Duration) then
unchanged 〈HardwareState, VirtualState〉

the system actions

else
∧ ClockTick
∧ Service
∧UpdateDiskState
∧UpdateRequesterState
∧ ConsumeEnergy

Fairness ∆=
WF〈HardwareState, VirtualState〉(Next)

Spec ∆= Init ∧2[Next]〈HardwareState, VirtualState〉 ∧ Fairness

C.1 DPM config file

SPECIFICATION Spec
INVARIANT TypeOK

* Experiment parameters

CONSTANT Duration = 20 * Simulation duration
CONSTANT MaxQ = 5 * Max allowed request queue size
CONSTANT MaxAvgPower = 50 * Consuming more power than this consitutes failure

CONSTANT Divisor = 1000 * Divisor for the fractions below

* Policy parameters
CONSTANT DiskSleepProb = 100 * 10% chance of idle disk falling asleep

* Disk workload parameters, from BBPM99
CONSTANT RequesterWakeupProb = 898 * idle requester starts up w/ 89.8% probability
CONSTANT RequesterSleepProb = 454 * active requester stops w/ 45.4% probability

* Hardware parameters
CONSTANT StartupEnergy = 500 * energy consumed by asleep->spinning transition
CONSTANT SpinEnergy = 10 * energy consumed in idle spinning state
CONSTANT AccessEnergy = 5 * SpinEnergy + AccessEnergy = energy consumed when active

14

